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Abstract
A hidden supersymmetry is revealed in the spinless Aharonov–Bohm problem.
The intrinsic supersymmetric structure is shown to be intimately related to
the scale symmetry. As a result, a bosonized superconformal symmetry is
identified in the system. Different self-adjoint extensions of the Aharonov–
Bohm problem are studied in the light of this superconformal structure and
interacting anyons. The scattering problem of the original Aharonov–Bohm
model is discussed in the context of the revealed supersymmetry.

PACS numbers: 11.30.Pb, 11.25.Hf, 71.10.Pm

1. Introduction

The Aharonov–Bohm (AB) effect was discovered theoretically 50 years ago [1, 2]. Since that
time, it found various experimental confirmations [3], and has been transformed into one of the
most studied problems in planar physics [4–10]; for a good review we refer the reader to [11].
The AB effect underlies the dynamical realization of anyons [12–14], which are currently
supposed to play the key role in the fractional Hall effect [15]. It appears in the analysis of
cosmic strings [16, 17], and planar gravity [18, 19]. This effect also plays an important role
in the physics of graphene and nanotubes [20–22].

In their original work [1], Aharonov and Bohm pointed out the importance of the
vector potential in quantum theory. Unlike in classical mechanics, it has a direct impact
on quantum dynamics even when the electromagnetic field vanishes everywhere in the regions
accessible to a charged particle. Such a situation is realized when the magnetic flux penetrating
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perpendicular to the plane is contained in finite regions bounded by an impenetrable barrier.
As a limit case we can consider the model given by the vector potential

Ai = α

h̄e
εij rj

�r 2
, �r = (x, y), (1.1)

which corresponds to a singular flux that punctures the plane in the origin x = y = 0. In
comparison with the free particle on the punctured plane, the physics is changed via a nontrivial
phase that the wavefunction acquires when it is moving around the point where the flux dwells.
This is the core of the AB effect.

In this work, we are going to testify this model in the presence of a hidden supersymmetry
[23]. We will show that the Hamiltonian of a spinless charged particle moving in the presence
of the vector potential (1.1),5

Hα = P2
x + P2

y = −∂2
r − 1

r
∂r +

1

r2
(−i∂ϕ + α)2, (1.2)

Px = −ı ∂x − α
y

r2
, Py = −ı∂y + α

x

r2
, (1.3)

x = r cos ϕ, y = r sin ϕ, possesses a rich algebraic structure of both exact (not dependent
on time explicitly) and dynamical (time dependent) integrals of motion, that close for a
superconformal superalgebra.

The key ingredients of a supersymmetric structure are supercharges Qa, a Hamiltonian H

and a grading operator �. The grading operator separates the set of relevant operators into
families of bosonic and fermionic observables in accordance with whether they commute or
anticommute with it. Supercharges are supposed to be fermionic while Hamiltonian is the
bosonic operator,

{�,Qa} = [H,�] = 0, �2 = 1. (1.4)

We speak about a hidden supersymmetry when the operators Qa and � can be found despite the
lack of fermionic (spin) degrees of freedom in a system. The hidden supersymmetric structure
has been observed in various physically interesting one-dimensional models, including the
Dirac delta function potential problem, the reflectionless Pöschl–Teller system [24] and
periodic finite-gap quantum systems [25, 26]. It was also observed in the bound-state
Aharonov–Bohm effect [24] that corresponds to a particle confined to a circle. In those
systems, the hidden supersymmetry reflects their peculiar spectral and scattering properties.

We will look for the operators �, Q1 and Q2 that would satisfy (1.4) and

{Qa,Qb} = 2δabHα, [Hα,Qa] = 0, Qa = Q†
a, a, b = 1, 2. (1.5)

These relations correspond to the Lie superalgebra of quantum mechanical N = 2
supersymmetry6. The supercharges Q1 and Q2 can be nonlocal in general, as they correspond
to the square roots of the spinless differential operator Hα .

The Hamiltonian Hα does not determine the dynamics of the particle uniquely until
its actual domain of definition is fixed. The ambiguity in the proper definition of the
system is intimately related to the self-adjoint extensions of the Hamiltonian. Physically,
this corresponds to different possibilities of realizing the condition of impenetrability of the
region x = y = 0. The task of self-adjoint extensions has been analyzed extensively in
the literature. The case of a single magnetic vortex has been studied as a limit case of an

5 We choose units in which the particle’s mass m = 1/2 and h̄ = c = e = 1.
6 In some systems, a hidden supersymmetry appears in a nonlinear form [27], in which the anticommutator of
supercharges is a polynomial in the Hamiltonian [28].
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impenetrable tube of finite radius with the internal magnetic field [29]. It was also analyzed
directly with making use of the von Neumann theory of self-adjoint extensions [17, 30, 31].

Having in mind our objective, we cannot use these results directly as they do not contain
any information on the existence of the supersymmetric structure described by (1.4) and (1.5).
Our approach will be different: we will identify first the grading operator �, and construct
operators Q1 and Q2 that will satisfy (1.4) and (1.5) formally. Then we will find their self-
adjoint extensions. Hamiltonian, defined as the square of supercharges, will be self-adjoint
by construction [32]. The obtained results will be compared with the known ones. As we
will see, the self-adjoint extension with regular wavefunctions at the origin will be unitarily
equivalent to the free particle system for integer values of the magnetic flux; meanwhile, it
will match exactly with the model discussed by Aharonov and Bohm for non-integer values
of α. We also find two other self-adjoint extensions of Hα , which for non-integer values of α

possess a hidden supersymmetry and correspond to supersymmetric two-anyon systems with
contact interaction.

The work is organized as follows. In the next section, we construct a formal supercharge
that satisfies the required properties. We then specify its self-adjoint extensions, and discuss the
existence of N = 2 supersymmetry in the system. Finding the eigenfunctions of the associated
Hamiltonian, we show that the obtained system coincides with the original model discussed by
Aharonov and Bohm. We analyze the action of supercharges on the wavefunctions to clarify
whether we have a exact or spontaneously broken supersymmetry. In section 3, we consider
two other self-adjoint extensions of Hα , which posses a hidden supersymmetry. Particular
attention is given to the case of the semi-integer flux in section 4, where an su(2) family of
grading operators exists. In section 5, we discuss the conformal symmetry of the systems and
confirm their scale invariance. Sequentially, we extend the algebraic structure of the hidden
supersymmetry by conformal symmetry. In section 6, we provide an alternative interpretation
of the model in terms of anyons. The last section is devoted to a brief summary and discussion
of the results, with emphasis on their physical aspects. Particularly, we discuss the scattering
problem in the original Aharonov–Bohm model in the light of the hidden supersymmetry
and related translation symmetry breaking. We also list some open problems which would
be interesting for a future research. Appendices include details on self-adjoint extensions of
the supercharges considered in sections 2 and 3, and explicit formulas for the domains of the
operators discussed in section 5.

2. Hidden N = 2 supersymmetry in the spinless AB system

In general, a formal Hamiltonian operator Hα (1.2) admits a four-parametric U(2) family
of self-adjoint extensions, which specify physically different configurations, distinct in their
spectral and scattering properties [31, 33]. The spectrum depends strongly on the actual choice
of the domain of definition of Hα; besides a continuous part of non-negative energy scattering
states, it may contain up to two bound states of negative energy. As we stated above, our goal
is to examine the model for the presence of the hidden supersymmetries (1.4), (1.5) generated
by self-adjoint supercharges. This excludes immediately those self-adjoint extensions of (1.2)
in which bound states are present, since negative energy levels would imply purely imaginary
eigenvalues for the supercharges.

The general solution of the partial-wave stationary Schrödinger equation for non-negative
energy E = k2, k � 0,

Hα�k,l = k2�k,l, (2.1)

3
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is a linear combination of Bessel, J|l+α|(kr), and Neumann, Y|l+α|(kr), functions multiplied
by eilϕ . The concrete choice of the linear combination is specified uniquely by the domain of
definition of the Hamiltonian. In their seminal work [1], Aharonov and Bohm considered the
model where only regular at r = 0 solutions were allowed, i.e. their solution of (2.1) was of
the form

�k,l ∼ J|l+α|(kr) eilϕ . (2.2)

This gives rise to a unique fixing of the self-adjoint extension of the operator Hα that
corresponds to the Aharonov–Bohm system, which we denote by HAB

α .
The aim of the present section is to reveal a hidden supersymmetry in the Aharonov–

Bohm system. We proceed as follows: first of all, we identify the Z2-grading operator of the
bosonized supersymmetry. Then we define a formal supercharge operator, find its self-adjoint
extension and obtain the second odd generator of the N = 2 supersymmetry. After that we
show that the square of the found supercharges coincides with the Hamiltonian HAB

α of the
Aharonov–Bohm system.

Consider a nonlocal operator of rotation in π ,

R f (x, y) = f (−x,−y) , or R f (r, ϕ) = f (r, ϕ + π), (2.3)

which is presented in terms of the total angular momentum J = −i∂ϕ + α as

R = e−iαπ eiπJ . (2.4)

It is a unitary, Hermitian involutive operator, R2 = 1, which commutes with Hamiltonian
(1.2), and can be identified as the grading operator �. Consider a formal nonlocal differential
operator

Qα = Px + iR(α)Py, where R(α) =
⎧⎨
⎩
R, α ∈ (−1, 0) mod 2,

R, α ∈ Z,

−R, α ∈ (0, 1) mod 2.

(2.5)

This operator and operator iRQα satisfy formally relations

{Qα,R} = {iRQα,R} = 0, {Qα, iRQα} = 0. (2.6)

On the other hand, we have

{Qα,Qα} = {iRQα, iRQα} = 2Hα + 2iR[Px,Py]. (2.7)

The commutator [Px,Py] is just the two-dimensional Dirac delta function. Unlike the
one-dimensional case, such a term is not uniquely defined in the planar quantum systems
[34, 35]. As was discussed in [36], the self-adjoint extension of the Hamiltonian Hα has to
be specified to define consistently the operator. When we specify the actual domain of the
self-adjoint extension of Hα , the Dirac delta function term is redundant in the potential since
its manifestation can be understood in the asymptotic behavior of the wavefunctions near the
origin7. In our current case, it will suffice to fix the self-adjoint extension of Qα since the
square of a self-adjoint operator is self-adjoint as well.

Before we step to the analysis of the self-adjoint extension of Qα , let us note that the
actual choice of the signs in definition of R(α) in (2.5) is crucial. An alternative choice of the
sign for the same flux value case leads to a different self-adjoint extension of Hα , and will be
discussed in the next section. As we will see later in this section, the exception is in the case
of integer flux values. For α ∈ Z, both choices R(α) = R and R(α) = −R lead to the same
result.
7 The same happens also in one dimension: when we require the wavefunction to be continuous at x = 0 and specify
its finite derivative jump there, the delta potential term can be omitted from the Hamiltonian operator [34].
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The operator Qα (2.5) defined on the smooth functions with compact support is symmetric.
Hence, the machinery of the von Neumann theory can be applied to find its self-adjoint
extensions. It can be checked that Qα is essentially self-adjoint for any α ∈ R. Indeed, the
equations (Qα)†f (r, ϕ) = ±if (r, ϕ) are not square integrable in R

2 solutions. The deficiency
index is equal to (0, 0), and the operator Qα does have a unique self-adjoint extension, its
closure, which we denote as QAB

α . Its domain of definition D(QAB
α ) is given by equations

(A.10) and (A.11) in appendix A.
To play the role of the supercharge, the operator QAB

α has to anticommute with the grading
operator. The operator R is essentially self-adjoint on D

(
QAB

α

)
and leaves this space invariant.

Hence, the anticommutation relation
{
QAB

α ,R
} = 0 is well defined on D

(
QAB

α

)
. This allows

us to construct immediately the second self-adjoint supercharge iRQAB
α , defined on D

(
QAB

α

)
as well. The square of the supercharges gives the self-adjoint Hamiltonian Hc

α that is defined
as

Hc
α = (

QAB
α

)2
, D

(
Hc

α

)
:= {


 ∈ D
(
QAB

α

)∣∣QAB
α 
 ∈ D(QAB

α )
}
. (2.8)

Let us now show that the system described by Hc
α coincides with the model proposed by

Aharonov and Bohm. To do this, we will find eigenfunctions of Hc
α .

To simplify the forthcoming analysis, let us comment on the relation between the systems
Hc

α and Hc
α+n with magnetic flux values different in integer number n ∈ Z. A simple formal

operator equality

Hα+n = U−1
n HαUn (2.9)

suggests that the unitary transformation Un = einϕ is associated with the change in the magnetic
flux of the system. It is indeed the case. First, we have U−1

n RUn = (−1)nR, and for α /∈ Z

there holds

U−1
n QAB

α Un = QAB
α+n, U−1

n D
(
QAB

α

) = D
(
QAB

α+n

)
. (2.10)

The case of α ∈ Z has, however, a peculiarity, and deserves a separate comment. For
α = n, there exists a system with hidden supersymmetry represented by self-adjoint operators
Hc

n and QAB
n defined on corresponding domains. We can use the transformation U1 to construct

another system with the same flux, described by Hc
n = U−1

1 Hc
n−1U1 and U−1

1 QAB
n−1U1. For the

transformed supercharge domain, there holds a relation

U−1
1 D

(
QAB

n−1

) = D
(
QAB

n

)
,

which means that the independent integrals of motion QAB
n , R and U−1

1 QAB
n−1U1 =

Px − iRPy coexist in the same domain D
(
QAB

n

)
. Their linear combinations (including

their multiplications by R) lead to another set of integrals of motion, given by R, Px , Py and
their multiples by R. But Px and Py are the generators of translation in the plane, and, hence,
the system described by Hc

n has a translational symmetry. As we will see, Hc
0 corresponds

to a free particle in the plane, which, of course, possesses translational invariance. Then the
revealed translational symmetry of Hc

n can be understood as a consequence of the unitary
equivalence of Hc

0 and Hc
n .

Note that the Hamiltonian Hc
0 is invariant, in addition, under spatial reflections. As there

is no preferential direction in the plane, we can consider two reflections

Rxg(x, y)Rx = g(−x, y), Ryg(x, y)Ry = g(x,−y), (2.11)

which satisfy the relations

R2
x = R2

y = 1, [Rx,Ry] = 0, R = RxRy. (2.12)

In the polar coordinates their action is given by

Rxf (r, ϕ)Rx = f (r, π − ϕ), Ryf (r, ϕ)Ry = f (r,−ϕ). (2.13)

5
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They commute with the operator R, therefore they should be treated as nonlocal even integrals
of motion within the supersymmetric structure. Despite their involutive nature, either of these
two operators can be identified as the grading operator since they do not anticommute with
the supercharge (2.5) (they do not commute with (2.5) either). As we will see in section 4, the
twisted analogs of the operators (2.11) emerge nontrivially in the systems with a half-integer
flux.

We conclude that the change in the sign of R(α) in definition (2.5) for an integer flux
value case reduces to a unitary transformation, and that this sign ambiguity gives rise to the
translational invariance of Hc

n . At the same time, we can see that the complete knowledge of
the system for α ∈ [−1, 0) (or for α ∈ [0, 1)) provides a detailed description for any other
value of the magnetic flux as well. We will employ this fact in the forthcoming analysis of the
spectral properties and supersymmetric structure of the system.

Let us fix the flux to be α ∈ [−1, 0). In the polar coordinates, the supercharge QAB
α reads

QAB
α = −ı eıϕ

[
∂r − 1

r
(−ı∂ϕ + α)

]
�− − ı e−ıϕ

[
∂r +

1

r
(−ı∂ϕ + α)

]
�+, (2.14)

where

�± = 1
2 (1 ± R) (2.15)

are the projectors on the subspaces of even (�+) and odd (�−) partial waves. It preserves
subspaces Hl ,

Hl := L{eı(2l−1)ϕ, eı2lϕ} ⊗ L2(R
+; r dr) ⊂ L2(R

2), l ∈ Z, (2.16)

where L{eı(2l−1)ϕ, eı2lϕ} is a linear space spanned by the indicated vectors. Then the eigenvalue
problem can be solved separately in each Hl .

The equation

QAB
α 
l,λ = λ
l,λ for 
l,λ = φ2l (r) ei2lϕ + φ2l−1(r) ei(2l−1)ϕ (2.17)

is rewritten with the help of (2.14) in the form

φ′
2l (r) +

2l + α

r
φ2l (r) = ıλ φ2l−1(r),

φ′
2l−1(r) +

1 − (2l + α)

r
φ2l−1(r) = ıλ φ2l (r).

(2.18)

The general solutions of (2.18) for nonzero eigenvalues λ are linear combinations of the Bessel
functions of the first, Jν(|λ|r), and second, Yν(|λ|r), kinds. The first is regular while the other
one is singular at the origin, but both are not normalizable. To keep their interpretation in
terms of scattering states, we require the wavefunctions not to have too strong divergence at
infinity8 and to respect the behavior near the origin, prescribed by the domain of definition.
Since the singular solution violates the first requirement due to its divergence at r = 0, it has
to be discarded. Then the acceptable solutions of (2.17) for λ �= 0 are


λ,l ∼ J|2l+α|(|λ|r) ei2lϕ − i
|λ|
λ

{
J|1−2l−α|(|λ|r) ei(2l−1)ϕ for 2l + α > 0,

−J|1−2l−α|(|λ|r) ei(2l−1)ϕ for 2l + α � 0.
(2.19)

The solutions of equations (2.18) for λ = 0 with admissible behavior at the origin are


0,l ∼
{
r2l+α−1 ei(2l−1)ϕ for 2l + α � 1,

r−2l−α ei2lϕ for 2l + α � 0.
(2.20)

8 The mathematical framework for scattering states is provided by the rigged Hilbert space, where the functions can
diverge at most as powers of r [37].
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We pass now to the analysis of the eigenfunctions of Hc
α . The Hamiltonian commutes

with the generator of rotations since D
(
Hc

α

)
is invariant with respect to the action of J. Hence,

one can find their common eigenfunctions �|λ|,j ,

Hc
α�|λ|,j = λ2�|λ|,j , J�|λ|,l = (l + α)�|λ|,l . (2.21)

They can be composed of the eigenvectors of QAB
α corresponding to different signs of λ:

�|λ|,2l ∼ 
λ,l + 
−λ,l ∼ J|2l+α|(|λ|r) e2ilϕ,

�|λ|,2l−1 ∼ 
λ,l − 
−λ,l ∼ J|1−2l−α|(|λ|r) ei(2l−1)ϕ.
(2.22)

The zero-energy eigenstates of Hc
α are

�0,l ∼ r |l+α| eilϕ . (2.23)

Note that the wavefunctions (2.22) vanish at the origin except in the special case of integer
flux such that 2l + α = β ∈ {0, 1}. In this case, J|β−2l−α|(|λ|r) = J0(|λ|r) → 1 for r → 0,
that is in agreement with the results on the self-adjoint extension of the free particle in the
punctured plane [38]. The exclusion of the origin is of no importance here since the considered
functions are regular at this point. In fact, the considered self-adjoint extension Hc

0 of Hα with
α = 0 is in correspondence with the system of the free particle, since its domain of definition
is spanned by the same complete basis of partial waves J|m|(kr) eimϕ .

We can compare the system represented by Hc
α with the original setting of Aharonov and

Bohm in a similar vein. The behavior of the wavefunctions near the origin is prescribed in the
same way in both systems. This leads to the same complete basis of partial waves given by
(2.19) and (2.20). Hence, Hc

α and HAB
α represent the same self-adjoint extension of Hα .

Thus, the system described by Hc
α coincides with that discussed originally by Aharonov

and Bohm:

Hc
α = HAB

α . (2.24)

This means that the Aharonov–Bohm model possesses the hidden N = 2 supersymmetry
generated by the supercharges QAB

α and iRQAB
α , in which the role of the grading operator is

played by the operator R. This result is valid for any value of the magnetic flux.
Now, let us discuss the nature of the revealed supersymmetry, and the action of the

supercharges. The spectrum of the operator HAB
α consists of the continuous part only, which

covers non-negative real numbers. Any value of energy E is infinitely degenerate since there
is an infinite set of linearly independent generalized wavefunctions (2.22) corresponding to
the given energy E = λ2. Let us discuss the action of the supercharges QAB

α and iRQAB
α . The

second supercharge interchanges the eigenfunctions of QAB
α with different signs of λ �= 0, i.e.

there holds

iRQAB
α 
λ,l ∼ 
−λ,l . (2.25)

Consequently, with the direct use of this relation and (2.22), we can write

Qa�|λ|,2l ∼ �|λ|,2l−1, Qa�|λ|,2l−1 ∼ �|λ|,2l, (2.26)

where Qa is QAB
α or iRQAB

α .
The spectrum of HAB

α includes an infinitely degenerate zero-energy level. We restrict
our consideration to the subspace Hl where all the energy levels are doubly degenerate.
This subspace is invariant under the action of the supercharges. Taking into account
equation (2.20) for the zero modes of QAB

α , we conclude that there exists just a single state in
Hl annihilated by QAB

α . Fixing l � 0, we can write an explicit form of the involved functions:

HAB
α �0,2l = HAB

α �0,2l−1 = 0, QAB
α �0,2l ∼ �0,2l−1, QAB

α �0,2l−1 = 0. (2.27)

7
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l

E

−1 0 1 2 3 4

Qα

Qα

Figure 1. For α ∈ [−1, 0) mod 2, the supercharges Qa ∈ {QAB
α , iRQAB

α } preserve the subspaces
Hl defined in (2.16). We illustrate the action of the supercharges in these subspaces for l = 0, 1, 2.
The zero-energy states (2.23) are represented by the circles: the black circles correspond to the
zero modes of Qa. The arrows between the same energy levels in each HAB

l correspond to relations
(2.26) for E > 0 and to relations (2.27) for E = 0.

This resembles the Jordan block structure, which can appear in diagonalization of a finite-
dimensional matrix. It does not contradict the self-adjointness of QAB

α —the supercharge can
be diagonalized by making use of its eigenstates (2.19) and (2.20).

Hence, the supercharges annihilate just half of the zero-energy states. The rest of these
states is transformed into the kernel of the supercharges (see figure 1).

This picture can be compared with the cases of unbroken and broken supersymmetries in
non-periodic one-dimensional systems. There, particularly, the unbroken supersymmetry is
related to the existence of a singlet bound state of zero energy, annihilated by a supercharge.
The second, nonphysical solution corresponding to zero energy is transformed to a physical
one by a supercharge. In the present case, the continuous nature of the spectrum together with
the infinite degeneracy of the energy levels prevents us from a similar classification of the
revealed hidden supersymmetry. On the other hand, there is some similarity of the revealed
hidden supersymmetric structure with that appearing in one-dimensional finite-gap periodic
quantum systems, cf [26].

In conclusion of this section, let us make a few comments on the structure of the revealed
supersymmetry, which later on will provide an alternative interpretation of the system in
terms of anyons. In (2.15) we introduced projectors �± on the subspaces of even and odd
orbital angular momenta. This allows us to separate the domain D

(
HAB

α

)
into two subsets

�±D(HAB
α ), each of which consists of eigenvectors of R with fixed eigenvalue +1 or −1. We

can employ the matrix representation of the projectors,

�+ =
(

1 0
0 0

)
, �− =

(
0 0
0 1

)
. (2.28)

The Hamiltonian HAB
α as well as other operators can be rewritten in the matrix form,

HAB
α =

(
HAB

α,+ 0
0 HAB

α,−

)
, R =

(
1 0
0 −1

)
, (2.29)

where HAB
α,± = �±HAB

α . The supercharge QAB
α is an antidiagonal operator and its explicit form

for α ∈ [−1, 0) can be deduced from (2.14) and (2.28). In this framework, the wavefunction
ψ from the domain of HAB

α is just a column vector, whose upper element is composed of
even partial waves, ψ+ = �+ψ = ∑

l∈Z
g+

l (r) ei2lϕ , while the lower component consists of

8
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odd partial waves, ψ− = �−ψ = ∑
l∈Z

g−
l (r) ei(2l−1)ϕ . Such a representation reveals an

obvious similarity of the hidden supersymmetry of the spinless Aharonov–Bohm system with
the supersymmetry of a usual form, associated with the introduction of the spin degrees of
freedom [39, 40].

3. Exotic models

The choice of the signs we made in the definition of R(α) in (2.5), and the observed ambiguity
for the α ∈ Z case, led us to the reveal the hidden N = 2 supersymmetry in the original
Aharonov–Bohm system. In this section we investigate the consequences of the alternative
choice of the signs in (2.5) for non-integer flux values.

So, let us consider the operator

Q̃α = Px − iR(α)Py, where R(α) =
{
R α ∈ (1, 2) mod 2,

−R α ∈ (0, 1) mod 2.
(3.1)

The formal relations (2.6) and (2.7) imposed on the supercharge remain intact, up to the sign
of the commutator term [Px,Py] in the square of Q̃α . This suggests that the difference, if any,
could appear in self-adjoint extensions of the supercharge operator (3.1).

The transformation U1 changes the flux of the system in one unit. It maintains the self-
adjointness of the operators, i.e. when an operator O is self-adjoint on D(O), the operator
Õ = U−1

1 OU1 is self-adjoint on U−1
1 D(O). This means that when we find all the admissible

self-adjoint extensions of Q̃α for α ∈ (−1, 0)|mod 2, we can get all the self-adjoint extensions
of the operator for α ∈ (0, 1)|mod 2 just by the application of this transformation. The inverse
is also true by changing the transformation U1 for U−1

1 = U−1. Without loss of generality, we
restrict our analysis to α ∈ (0, 1)|mod 2.

As the operator Q̃α for α ∈ (0, 1)|mod 2 coincides formally with the operator Qα for
α ∈ (−1, 0)|mod 2, we can use directly equation (2.14) to express the operator in polar
coordinates, just keeping in mind the different range of α. The operator Q̃α preserves the
subspaces (2.16), and is symmetric on C∞

0 (R2 − {0}). The domains of its conjugate and its
closure are presented in appendix A.

We have to solve the deficiency equations Q̃†
αψ = ±iψ to reveal the bases of the deficiency

subspaces. Relation (2.14) together with (2.16) simplifies this task since the problem can be
inspected for each subspace Hl separately. The deficiency indexes are vanishing again in all
the subspaces Hl except the subspace Hl0 given by the integer l0 such that 2l0 + α ∈ (0, 1). In
contrary to (2.5), the deficiency indexes of Q̃α are (1, 1), so that there exists a U(1) family of
self-adjoint extensions Q̃

γ
α of Q̃α . The detailed derivation of the result is rather technical (see

appendix A), and we present the final form of the domain of the self-adjoint operator Q̃
γ
α :

D
(
Q̃γ

α

)
:= {
(r, ϕ) = f (r, ϕ) + A[
+(r, ϕ) + eıγ 
−(r, ϕ)]|

f (r, ϕ) ∈ D(Qα),A ∈ C, γ ∈ [0, 2π)}, (3.2)

where Qα is the closure of Q̃α . Expanding the function f (r, ϕ) ∈ D(Qα) in partial waves
f (r, ϕ) = ∑

l fl(r) eilϕ , we find that the radial parts fl(r) have to have the following asymptotic
behavior near the origin: |fl(r)| = O(1) for l /∈ {2l0, 2l0 − 1}, while |f2l0(r)| = o(r−2l0−α)

and |f2l0−1(r)| = o(r−1+2l0+α). The functions 
±(r, ϕ) form the basis of deficiency subspaces,
Q̃†

α
±(r, ϕ) = ±i
±(r, ϕ), and can be written in terms of McDonald functions


± = K2l0+α(r) e2l0iϕ ± K1−(2l0+α)(r) e(2l0−1)iϕ . (3.3)

9



J. Phys. A: Math. Theor. 43 (2010) 075202 F Correa et al

The operator R is essentially self-adjoint on D
(
Q̃

γ
α

)
, but the requirement

{
Q̃

γ
α ,R

} = 0
is consistent if and only if the operator R leaves D

(
Q̃

γ
α

)
invariant. Using (3.2) and the fact

that RD(Qα) = D(Qα), we get

R
(
D

(
Q̃γ

α

)) = D
(
Q̃2π−γ

α

)
. (3.4)

The requirement on the invariance of D
(
Q̃

γ
α

)
holds true for two values of parameter γ only:

γ = 0, π mod (2π). (3.5)

Hence, the N = 2 supersymmetric structure is admissible just for these values of the parameter
γ . If not stated otherwise, we will restrict γ ∈ {0, π} from now on. In this case, the domains
of Q̃

γ
α and iRQ̃

γ
α coincide. It is worth mentioning that both D

(
Q̃0

α

)
and D

(
Q̃π

α

)
acquire a

particularly simple form,

D
(
Q̃0

α

)
:= {
(r, ϕ) = f (r, ϕ) + A K2l0+α(r) e2il0ϕ|f (r, ϕ) ∈ D(Qα),A ∈ C}, (3.6)

D
(
Q̃π

α

)
:= {
(r, ϕ) = f (r, ϕ) + A K1−2l0−α(r) e(2l0−1)iϕ|f (r, ϕ) ∈ D(Qα),A ∈ C}, (3.7)

which manifests their invariance with respect to rotations generated by J.
The structure of N = 2 supersymmetry is completed by the following definition of the

self-adjoint Hamiltonian H
γ
α :

Hγ
α = (

Q̃γ
α

)2
, D

(
Hγ

α

)
:= {


 ∈ D
(
Q̃γ

α

)∣∣Q̃γ
α
 ∈ D

(
Q̃γ

α

)}
. (3.8)

Hence, taking the different definition (3.1) of the supercharge, we reveal two distinct self-
adjoint extensions H

γ
α of the formal Hamiltonian operator Hα , which, like the Aharonov–

Bohm system considered in the previous section, are characterized by the hidden N = 2
supersymmetry. As the domains of Hamiltonians are invariant with respect to J, the systems
have rotational symmetry as well.

In the next step we will analyze the spectrum of H
γ
α and find the associated wavefunctions.

Since H
γ
α is the square of the self-adjoint operator Q̃

γ
α , and D

(
H

γ
α

)
is a subset of D

(
Q̃

γ
α

)
, we

conclude that in correspondence with the hidden supersymmetric structure, the spectrum is
non-negative.

We can employ equations (2.14), (2.17) and (2.18), keeping in mind the different range
of α, 2l0 + α ∈ (0, 1), l0 ∈ Z. Singular solutions of (2.18) have to be discarded in the
subspaces Hl for l �= l0. Hence, the eigenfunctions 
λ,l = φ2l e2ilϕ + φ2l−1 ei(2l−1)ϕ lying in
these subspaces have exactly the same form as (2.19) and (2.20). The situation is different in
the subspace Hl0 . Due to (3.2), the admissible solutions 
λ,l0 in Hl0 have to fit the following
asymptotic behavior near the origin:

φ2l0(r) = A(1 + eıγ )
�(2l0 + α)

21−(2l0+α)
r−2l0−α + o(r−2l0−α),

φ2l0−1(r) = A(1 − eıγ )
�(1 − (2l0 + α))

22l0+α
r−1+2l0+α + o(r−1+2l0+α),

(3.9)

dictated explicitly by the relevant part A(
+(r, ϕ) + eiγ 
−(r, ϕ)) of the domain of Q̃
γ
α , where

A is a constant. The solutions of (2.18) for λ �= 0 are

φ2l0(r) = C1J|2l0+α|(|λ|r) + C2Y|2l0+α|(|λ|r),
φ2l0−1(r) = −ı

|λ|
λ

(C1J2l0+α−1(|λ|r) + C2Y2l0+α−1(|λ|r)),
(3.10)

10
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with the coefficients related to A,

C2

A
= −π

2

( |λ|
μ

)2l0+α

(1 + eıγ ),

C1

A
= π

2 sin(π(2l0 + α))

×
{

ıλ

|λ|
( |λ|

μ

)1−2l0−α

(1 − eıγ ) + cos(π(2l0 + α))

( |λ|
μ

)2l0+α

(1 + eıγ )

}
.

(3.11)

The solution of (2.18) for λ = 0 reads


l0,0 ∼
{
r−2l0−α e2il0ϕ for γ = 0,

r−1+2l0+α e(2l0−1)iϕ for γ = π.
(3.12)

Likewise in the previous section, there holds
[
H

γ
α , J

] = 0 since D
(
H

γ
α

)
is invariant with

respect to the action of J. Hence, one can find the common eigenfunctions �|λ|,j :

Hγ
α �|λ|,j = λ2�|λ|,j , J�|λ|,j = (j + α)�|λ|,j . (3.13)

They can be composed of the eigenvectors of Q̃
γ
α which correspond to eigenvalues ±λ. As

long as l �= l0, the scattering states of H
γ
α take the form (2.22). For l = l0, we get

�|λ|,2l0 ∼ 
λ,2l0 + 
−λ,2l0 ∼ [cos πα̃Jα̃(|λ|r) − sin πα̃Yα̃(|λ|r)] e2l0iϕ, γ = 0, (3.14)

�|λ|,2l0−1 ∼ 
λ,2l0 − 
−λ,2l0 ∼ J1−α̃(|λ|r) ei(2l0−1)ϕ, γ = 0, (3.15)

�|λ|,2l0 ∼ 
λ,2l0 − 
−λ,2l0 ∼ Jα̃(|λ|r) e2l0iϕ, γ = π, (3.16)

�|λ|,2l0−1 ∼ 
λ,2l0 + 
−λ,2l0 ∼ [cos πα̃ J1−α̃(|λ|r)− sin πα̃ Y1−α̃(|λ|r)] e(2l0−1)iϕ, γ = π,

(3.17)

where α̃ = 2l0 +α. Like in (2.25), the second supercharge iRQ̃
γ
α interchanges eigenvectors of

Q̃
γ
α with different signs of λ. Consequently, the supercharges interchange the wavefunctions

�|λ|,2l and �|λ|,2l−1 given by (2.22) for l �= l0, and by (3.14)–(3.17) for l = l0. In contrary to
the Aharonov–Bohm Hamiltonian HAB

α , the operator H 0
α

(
resp. Hπ

α

)
has a singular zero mode

�0,2l0 = r−2l0−α e2l0iϕ (resp. �0,2l0−1 = r−1+2l0+α e(2l0−1)iϕ) in the subspace D
(
H 0

α

)∩Hl0

(
resp.

D
(
Hπ

α

) ∩ Hl0

)
9. However, there are no other differences in the analysis; the supercharge Q

γ
α

annihilates just half of the zero-energy states, mapping the rest to its kernel. Hence, the action
of the supercharge Q

γ
α is qualitatively in complete agreement with the discussion presented

for QAB
α in the previous section.

4. Half-integer flux and twisted reflections

The operator R commutes formally with Hα for any value of the magnetic flux α. In contrast,
the reflection operators Rx and Ry defined in (2.11) are exclusive integrals of motion of the
free particle. When the magnetic flux is switched on, they provoke a change in the sign of the
magnetic flux in Hα , i.e. RxHαRx = RyHαRy = H−α .

We can define the ‘twisted’ reflection operators R̃x = eiαπ e−2iαϕRx and R̃y = e−2iαϕRx,

for which formally [Hα, R̃x] = [Hα, R̃y] = 0 and

R̃2
x = R̃2

y = 1. (4.1)

9 The zero modes of H
γ
α as well as HAB

α can be understood as a low-energy limit of the properly normalized
scattering states.
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For a general value of α, however, they do not preserve the space of 2π -periodic functions. R̃x

and R̃y are defined consistently for α = m or α = m+ 1
2 only, where m ∈ Z. For α = m, these

operators are related to non-twisted reflections (2.11) by the unitary transformation Um = eimϕ ,
and they commute, therefore, with R. The situation is essentially different for half-integer
values of α. For α = m + 1

2 we get

R̃x = −i e−i(2m+1)ϕRx, R̃y = e−i(2m+1)ϕRy, (4.2)

and

[R̃x, R̃y] = 2iR, [R, R̃x] = 2iR̃y, [R, R̃y] = −2iR̃x, (4.3)

where for the sake of convenience we included in the definition of R̃x an additional numerical
factor (−1)m+1. The operators satisfy also

{R̃x, R̃y} = {R̃x,R} = {R̃y,R} = 0 . (4.4)

Relations (4.3) and (4.4) mean that the twisted reflection operators (4.2) together with R
satisfy exactly the same set of algebraic relations as the three Pauli matrices, i.e. up to the
numerical factor 1

2 they are generators of the spinorial representation of su(2). In this section,
we discuss the role of the triplet of reflection operators for the hidden supersymmetry of the
systems with half-integer flux10.

Without loss of generality, set α = 1/2. The operators R, R̃x = −ie−iϕRx and
R̃y = e−iϕRy are symmetric on D

(
QAB

1/2

)
, or D

(
Q̃

γ

1/2

)
, γ ∈ [0, 2π). In addition, neither

R̃xf = ±if nor R̃yf = ±if have nontrivial solutions. The operators are essentially self-
adjoint both on D

(
QAB

1/2

)
and on D

(
Q̃

γ

1/2

)
. As R̃2

x = R̃2
y = 1, they are unitary as well.

The described properties of the triplet of reflection operators allow us to introduce a three-
parametric family of SU(2)-transformations

U(βx, βy, β) = ei(βxR̃x+βyR̃y+βR), (4.5)

which will be important in the forthcoming analysis.
Consider now the Aharonov–Bohm model described by HAB

1/2 . The domain (A.10) of the
supercharge QAB

1/2 is invariant under the action of all the triplet of reflections:

RD
(
QAB

α

) = R̃xD
(
QAB

1/2

) = R̃yD
(
QAB

1/2

) = D
(
QAB

1/2

)
. (4.6)

Therefore, the set of integrals of motion of HAB
1/2 consisting of QAB

1/2, iRQAB
1/2, R and J has to

be extended by the operators R̃x and R̃y .
The question is then how they could be incorporated into the superalgebraic structure of the

system. Keeping R as the grading operator, the new integrals of motion are of the fermionic
nature. Hence, the anticommutators with the supercharges QAB

1/2 and iRQAB
1/2 should be

computed, as well as their commutators with J. Both twisted reflections, however, anticommute
with the angular momentum generator J. As a consequence, the repeated commutators with J
give

[R̃x, J ] = 2R̃xJ, [R̃xJ, J ] = 2R̃xJ
2, . . . , [R̃xJ

n, J ] = 2R̃xJ
n+1, (4.7)

and analogous relations for R̃y . Subsequent anticommutators of the odd integrals R̃xJ
n

and R̃yJ
k , n, k = 0, 1 . . . , produce the integrals of the form RJ n. In the same way,

the anticommutators of the twisted reflections with the supercharges QAB
1/2 and iRQAB

1/2, and
corresponding repeated (anti)commutation relations reproduce the basic integrals multiplied
by

(
HAB

1/2

)n
. We see that the inclusion of the twisted reflection operators into the superalgebraic

10 The special ‘magic’ of half-fluxons was discussed in a context different from the present one in [41, 42].
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structure leads to its nonlinear deformation characterized by appearance of the multiplicative
factors (J )n and

(
HAB

1/2

)k
in (anti)commutation relations, cf [24, 26–28].

Since the integrals R̃x and R̃y satisfy relations (4.1), any of them can also be taken as
the Z2-grading operator instead of R. Such a possibility for an alternative choice of the
grading operator resembles the tri-supersymmetric structure studied in [26]. The difference is
that here the three involutive integrals mutually anticommute, while in the tri-supersymmetric
structure analogous integrals mutually commute11. If, for instance, R̃x is identified as the
grading operator, the operators QAB

1/2 and iR̃xQ
AB
1/2 will be nontrivial supercharges, and the

angular momentum J has also to be treated as an odd generator. The anticommutator of
the supercharge iR̃xQ

AB
1/2 with R generates then iR̃yQ

AB
1/2 that has to be treated as an even

integral. Further computing shows that with Rx taken as the grading operator, we have, again,
a nonlinear superalgebraic structure.

The picture is completely different in the case of the systems described by H
γ

1/2

(γ ∈ {0, π}). The operators R̃x and R̃y are no longer symmetries of the system as the
domain D

(
H

γ
α

)
is not invariant under their action. The unitary transformations (4.5) can

be used to map the system H
γ

1/2 (γ ∈ {0, π}) to another, equivalent one, with the same
supersymmetric structure. Let us discuss a few particular examples, where the transformed
grading operator acquires particularly simple form. We are interested in the mappings which
would interchange the operators R, R̃x and R̃y in the role of the grading operator,

R = −U0RU†
0, R̃x = −U1RU†

1 = U3RU†
3, R̃y = −U2RU†

2 = U4RU†
4, (4.8)

where the explicit form of the SU(2)-transformations is

U0 = ei π
2 R̃y = iR̃y,

U1 = ei( π
2 R− π

4 R̃y) = i√
2
R(1 − iR̃y), U3 = e−i π

4 R̃y = 1√
2
(1 − iR̃y),

U2 = e−i π
4 R̃x = 1√

2
(1 − iR̃x), U4 = ei( π

2 R− π
4 R̃x) = i√

2
R(1 − iR̃x).

(4.9)

Let us note that the transformations (4.8) together with (2.4) suggest that the twisted reflections
R̃x and R̃y can be written formally in the following way:

−R̃x = exp
(
iπU3JU†

3

)
, R̃y = exp

(
iπU1JU†

1

)
. (4.10)

Inspect now how these transformations change the other constituents of the
supersymmetry, Hamiltonian and supercharges. Formally, the Hamiltonian H1/2 commutes
with any of R, R̃x or R̃y so that it is invariant with respect to the SU(2)-transformations (4.5).
The formal operator Q̃1/2 is transformed as

U0Q̃1/2U†
0 = Q̃1/2, U1Q̃1/2U†

1 = −Q̃1/2, U3Q̃1/2U†
3 = Q̃1/2,

U2Q̃1/2U†
2 = iR̃xQ̃1/2, U4Q̃1/2U†

4 = iR̃xQ̃1/2.
(4.11)

Let us suppose that we take the self-adjoint extension H 0
1/2

(
with the supercharge Q̃0

1/2

)
as the

initial system. The transformations (4.5) are unitary, and applied to Q̃0
α produce self-adjoint

operators, defined on UkD
(
Q̃0

α

)
for k ∈ {0, 1, 2, 3, 4}. The transformed supercharges in the

upper line of (4.11) coincide formally with Q̃1/2. As we found in the previous section, there
exists a one-parametric family of the self-adjoint extensions of this operator, labeled γ . Hence,

11 A supersymmetric structure with three mutually anticommuting involutive integrals of motion was observed recently
in Bogolyubov–de Gennes system [43].
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the systems produced by U0, U1 and U3 should fit into this classification scheme. This is indeed
the case: we can write

U0Q̃
0
1/2U

†
0 = Q̃π

1/2, U1Q̃
0
1/2U

†
1 = Q̃

π/2
1/2 , U3Q̃

0
1/2U

†
3 = Q̃

3π/2
1/2 , (4.12)

where the value of the index γ coherently reflects the domain of definition, given by (3.2). The
remaining systems with the supercharges of the lower line in (4.11) do not belong to the family
of self-adjoint operators Q̃

γ

1/2 as neither of the supercharges coincides formally with Q̃1/2.
The explicit form of the domains of definition of the new supercharges for k ∈ {1, 2, 3, 4} can
be written in the following compact form:

UkD
(
Q̃0

1/2

) = {
(r, ϕ) = f (r, ϕ) + A Kα(r)(1 + ik e−iϕ)|f (r, ϕ) ∈ D(Qα),A ∈ C}. (4.13)

Hence, for the semi-integer values of the magnetic flux α we have a three-parametric
family of the systems with hidden supersymmetry, associated with the formal supercharge
operator

Qα(βx, βy, β) = UQ̃0
αU†, D(Qα(βx, βy, β)) = UD

(
Q̃0

α

)
, U = U(βx, βy, β).

(4.14)

These systems fit into the general scheme of the self-adjoint extensions of the Aharonov–
Bohm model discussed in [31], where the self-adjoint extensions of Hα with broken rotational
symmetry were observed. Despite the rotational symmetry being broken in our present
case as well (see (4.13)), domains of definition are invariant with respect to the operator
J̃ (βx, βy, β) = UJU†, i.e. the systems associated with (4.14) are unitarily equivalent to the
systems with rotational symmetry.

5. Superconformal symmetry

Jackiw showed that like a charge–monopole system [44], the original Aharonov–Bohm model
is characterized by a dynamical conformal so(2, 1) symmetry [45]. We revealed the hidden
N = 2 supersymmetry not only in the Aharonov–Bohm system characterized by a regular
behavior of the wavefunctions at the origin but also in exotic models corresponding to some
special cases of the U(2) family of self-adjoint extensions of the formal Hamiltonian operator
(1.2). On the other hand, if we look at the U(2) family of the self-adjoint extensions requiring
the scale symmetry, this also excludes immediately those cases which are characterized by the
presence of the bound states. Such a similarity with restrictions imposed by the requirement
of the presence of the hidden supersymmetry, certainly, is worth a more in-depth look. In
this section, we study the question of compatibility of the revealed hidden supersymmetric
structure with the dynamical conformal symmetry.

Besides the Hamiltonian of the system, which we denote here by H, the dynamical
conformal symmetry [46] is generated by the operators D and K that depend explicitly on
time. They satisfy equation d

dt
C = ∂tC − i[H, C] = 0, C = D,K , and their explicit form is

given by

D = tH − 1
4 (�x �P + �P�x), K = −2t2H + 4tD + 1

2 �x2. (5.1)

The operator D generates dilatations, while K is the generator of the special conformal
transformations. The conformal algebra so(2, 1) is established by the formal commutation
relations

[D,K] = iK, [H,K] = 4iD, [H,D] = iH. (5.2)

The domain Dc where the commutators are well defined has to be specified. It has to be located
at the intersection of the domains of all the involved operators. Also, the action of each of
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the operators H, K and D has to keep the wavefunction in the domains of the two remaining
operators. For t = 0, the explicit form of D and K in polar coordinates is

D = i

2
(1 + r∂r), K = 1

2
r2. (5.3)

Both these operators are essentially self-adjoint. Indeed, the solutions of Df (r, ϕ) =
±if (r, ϕ) are not square integrable, while deficiency equations Kf (r, ϕ) = ±if (r, ϕ) do
not have solutions at all. The domains of the essentially self-adjoint operator K, and of the
self-adjoint operator D, are described in appendix B. Fixing H to be one of the operators HAB

α

or H
γ
α , γ = 0, π , we can write

Dc = {
(r, ϕ) ∈ D(H) ∩ D(D) ∩ D(K)|H
 ∈ D(D) ∩ D(K),

D
 ∈ D(H) ∩ D(K),K
 ∈ D(D)}. (5.4)

This set is dense in L2(R
2) as it contains smooth functions with compact support

(
C∞

0 (R2)
)
.

The generalized eigenvectors (scattering states) of H do not have compact support, and
are not square integrable. However, they can serve to construct the wave packets which are
normalizable, and represent physical states. These square integrable functions inherit some
of the properties of the scattering states; they do not belong to C∞

0 (R2), and have a specific
behavior of partial waves near the origin, dictated by D(H). We can ask whether they are
present in Dc. The necessary condition is that the operators K and D do not alter the asymptotic
behavior of the partial waves near the origin.

The domain of definition of either HAB
α or H

γ
α is rotationally invariant. The partial waves

near the origin may not be more divergent than a fixed power of r, prescribed by the domain
of definition. Keeping in mind the explicit form (5.3), we see that neither K nor D violate
this restriction on the asymptotic behavior of partial waves. Hence, the domain Dc includes
the physically interesting states12 composed of the scattering states. This conclusion is not
evident for other self-adjoint extensions H

γ
α when a general value of γ is considered. Let us

just note that the invariance with respect to D is broken in general. The scale invariance is
recovered for γ = 0 or γ = π when α is treated as a free parameter. For a fixed value of the
magnetic flux α = 1/2 mod 1, the scale symmetry appears in the whole family of self-adjoint
extensions H

γ

1/2 for any value of γ , see appendix B. Therefore, the hidden supersymmetry of
the systems represented by HAB

α and H
γ
α comes hand in hand with conformal symmetry and

the scale invariance in particular. Below we show that both structures are compatible in the
Lie algebraic sense, and give rise to the superconformal osp(2|2) symmetry.

The operators K and D commute with R, their domains are invariant with respect to the
action of R and they can be treated as bosonic generators in the framework of the extended
superalgebra. The relevant commutation and anticommutation relations have to be computed
to verify that the superalgebra is closed. The computation does not depend on the actual
choice of the self-adjoint extension, so that we adopt the notation H for HAB

α or H
γ
α , and,

respectively, Q1 = Px + iεRPy for QAB
α or Q̃

γ
α , and Q2 = −iεRQ1, where ε = +1 or −1 in

dependence on the value of the flux α, see equations (2.5) and (3.1). The self-adjoint generator
of dilatations is denoted below by D. To close the superalgebra, two additional integrals of
motion (explicitly dependent on time) have to be involved. In the commutator of K and Qj,
there appear new integrals of motion

[Qj,K] = −iSj , S2 = −iεRS1, (5.5)

where

S1 = X + iεRY, X = x − 2tPx, Y = y − 2tPy.

12 We have in mind a two-dimensional exponentially decreasing (gaussian) wave packet for instance.
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The mixed anticommutator of Qj and Sk brings a new conserved quantity, {Q1, S2} = 2F ,

F = εR − J. (5.6)

Completing the remaining relations dictated by the superalgebra, we end up with

{Qi,Qj } = 2δijH, {Si, Sj } = 4δijK,

{Qj, Sk} = −4δjkD + 2εjkF,

[Qj,K] = −iSj , [Sj ,K] = 0,

[Qj,D] = i

2
Qj, [Sj ,D] = − i

2
Sj ,

[Qj,H ] = 0, [Sj ,H ] = 2iQj,

[F,Qj ] = iεjkQk, [F, Sj ] = iεjkSk,

[F,H ] = [F,K] = [F,D] = 0,

[F,R] = [H,R] = [D,R] = [K,R] = {Qj,R} = {Sj ,R} = 0.

(5.7)

Instead of the even generators J and R, in addition to the linear combination (5.6) we define
the operator

Z = J − ε

2
R, (5.8)

which commutes with all the other even and odd generators of superalgebra, playing the role
of its central charge. The introduced operators Sj, F and Z are essentially self-adjoint on their
natural domains of definition, see appendix B. Note that from the relation J = F + 2Z it
follows that Qi and Si are vector operators.

Likewise in the case of the conformal symmetry, the actual domain of definition Dsc has to
be specified to make the relations (5.2) and (5.7) consistent. It has to be an intersection of the
domains of the involved operators (just let us recall thatD(Q1) = D(Q2) andD(S1) = D(S2)),
and the action of any of them has to keep the function in the intersection of the domains of the
remaining operators.

The same analysis applies as in the case of Dc. The domain Dsc is dense in L2(R
2)

as it contains the set of smooth functions with compact support. We require that neither of
the operators violates asymptotics of the functions near the origin—they should maintain or
increase the power of the leading term in the asymptotic expansion. This requirement is met
by all the new operators Sj, F and Z . Hence, the domain Dsc can support physically interesting
states represented particularly by wave packets.

We conclude that the three self-adjoint extensions HAB
α , H 0

α and Hπ
α possess the scale

invariance as a consequence of their conformal symmetry. The conformal and hidden
supersymmetric structures of these systems are compatible, and lead to the superconformal
symmetry. The resulting algebraic structure corresponds to the superalgebra osp(1|2) × o(2),
which was observed earlier in various physical models [47–50], including a spin-1/2 particle
in the presence of a magnetic vortex [50]13. For spin-1/2 particle systems possessing the
superconformal symmetry, the role of the grading operator is played by the matrix σ3. We
revealed here the same superalgebraic structure in the system without fermionic degrees of
freedom.

13 The analysis of the algebraic structure was performed in [50] on a formal level, without touching the questions of
self-adjointness of corresponding generators.
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6. Hidden supersymmetry and anyons

In early 1980s, Wilczek proposed a dynamical mechanism for the realization of anyons that
is based on the Aharonov–Bohm effect [13]. Here we show that the anyon picture provides a
rather natural interpretation for the hidden supersymmetric structure described in the previous
sections.

Consider a two-anyon, planar system described by the formal Hamiltonian operator

Hany = 2
2∑

I=1

(�pI − �aI (�r))2, (6.1)

where �pI = −i∂/∂�xI , �r is a relative coordinate, �r = �x1 − �x2, and we set the masses of the
constituents m1 = m2 = 4. The constituent point particles are ‘statistically charged’, and
each carries a ‘magnetic’ vortex described by the statistical vector potential:

ak
1(�r) = −ak

2(�r) = 1

2
αεkl rl

�r 2
. (6.2)

In the center of mass reference frame, Hamiltonian (6.1) takes the form (1.2).
The two-anyon system may be composed of statistically interacting identical bosons,

or fermions. This means that when the statistical interaction is switched off (α = 0),
the constituent particles should obey either Bose, or Fermi statistics. The identity of the
particles and their statistics are taken into account by requiring that under the exchange,
�r → −�r ⇒ ϕ → ϕ + π , the wavefunction obeys the relation ψα=0(r, ϕ + π) = ηψα=0(r, ϕ)

with η = +1 for boson, or η = −1 for fermion constituents. This requirement is maintained
when the statistical interaction is switched on. Therefore, we have

ψα(r, ϕ) =
∑

l

eilϕfα,l(r), l ∈
{

2Z for anyons based on bosons,
2Z + 1 for anyons based on fermions.

(6.3)

Requiring Hamiltonian (6.1) to be a self-adjoint operator, its domain of definition has to be
specified. The nontrivial behavior of the wavefunctions (6.3) near the origin, dictated by the
particular choice of the self-adjoint extension, is then interpreted as a contact (zero-range)
interaction of the anyons [51].

The anyon framework provides an interesting interpretation for the systems we studied
in sections 2 and 3. As follows from the discussion at the end of section 2, Hamiltonians
HAB

α , H 0
α and Hπ

α can be described by diagonal two-by-two matrices in representation where
the grading operator R is given by the Pauli matrix σ3, see (2.29). The upper and lower
components of the states in this representation correspond to π -periodic and π -antiperiodic in
ϕ parts of the wavefunctions. Due to the described correspondence between Hamiltonian (6.1)
of the two-anyon system and Hamiltonian (1.2), we conclude that the diagonal components
�±HAB

α and �±H
γ
α of the studied spinless systems can be understood as the Hamiltonians

that describe the relative motion of the two-anyon systems. The upper component represents
the system based on bosons (as it acts on π -periodic functions) while the lower diagonal
operators rule the dynamics of the system based on fermions. The self-adjoint Hamiltonians
�±H

γ
α imply additional contact interaction of the anyons.

Therefore, the hidden superconformal symmetry that we revealed in the spinless
Aharonov–Bohm system corresponds to an explicit center-of-mass supersymmetric structure
of the system composed of the two two-anyon systems based on bosons and on fermions.
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7. Discussion and outlook

Let us summarize and discuss the main results by stressing the physical aspects that are behind
the revealed hidden supersymmetric structure.

For integer values of the flux, α = n, n ∈ Z, the Aharonov–Bohm system is unitary
equivalent to a planar free particle system (α = 0). The latter possesses the rotational and
translational symmetries generated by the angular momentum operator J, and by mutually
commuting momenta operators Px and Py . In correspondence with this, the Hamiltonian
operator (1.2) can be factorized as

Hn = (Px + iεPy)(Px − iεPy), (7.1)

or, alternatively, can be presented as a perfect square,

Hn = (Px + iεRPy)
2, (7.2)

where the parameter ε can take any of two values, +1 or −1, and R is a nonlocal operator of
rotation for angle π . For α �= n, the formal Aharonov–Bohm Hamiltonian (1.2) can also be
factorized in the form (7.1), or (7.2). However, in the case of a non-integer flux, the operators
Px and Py are not physical, and the translation invariance is broken, see below. Thus, for
α �= n, (7.1) is a purely formal factorization. In contrast with (7.1), representation (7.2) can be
well defined. A nontrivial property associated with factorization (7.2) is that for a given flux
α �= n; two different choices for the value of the parameter ε correspond to physically distinct
systems. For α ∈ (−1, 0) mod 2, ε = +1, and α ∈ (0, 1) mod 2, ε = −1, factorization (7.2)
corresponds to the original system HAB

α investigated by Aharonov and Bohm [1, 2], which
is characterized by a regular at the origin behavior of the Hamiltonian eigenfunctions. An
alternative choice of the values of the parameter ε in (7.2) gives rise to two different, exotic
models given by self-adjoint Hamiltonians H

γ
α with γ = 0, π , which are characterized by a

singular behavior at the origin of their eigenfunctions in one specific partial wave correlated
with the value of the flux, see equations (3.14)–(3.17). For half-integer values α = n + 1/2,
both exotic systems with γ = 0 and γ = π are unitary equivalent, and like the Aharonov–
Bohm model HAB

α , they possess additional nonlocal integrals of motion in the form of the
twisted reflection operators R̃x and R̃y . These nonlocal integrals together with R satisfy the
same algebraic relations as the three Pauli matrices, i.e., generate a spinorial representation of
su(2) realized on the states of the corresponding system.

Identifying the nonlocal operator R as the Z2-grading operator, we interpret the self-
adjoint operator appearing in factorization (7.2) as the supercharge Q1; another self-adjoint
supercharge is Q2 = iRQ1. Therefore, for non-integer flux values, the translation symmetry
of the Aharonov–Bohm system HAB

n is broken, and corresponding mutually commuting
generators Px and Py are substituted by nonlocal, mutually anticommuting, odd operators
Q1 = Px + iεRPy and Q2 = −εPy + iRPx .14

By taking into account the dynamical conformal symmetry, the revealed hidden
supersymmetric structure of the spinless Aharonov–Bohm system is extended to the
superconformal osp(2|2) symmetry. By this superconformal symmetry, one can relate not
only the states with the same value of the angular momentum and different values of the
energy, see [45], but also the states with different energy values and different in one angular
momentum in correspondence with figure 1 [53].

We have shown that the hidden superconformal symmetry of the spinless Aharonov–
Bohm system is in one-to-one correspondence with the explicit center-of mass supersymmetric

14 This picture can be compared loosely with that appearing in the BRST scheme of quantization of usual, non-
supersymmetric gauge invariant theories, where after gauge fixing the even generators of gauge symmetries are
substituted by the mutually anticommuting nilpotent BRST and anti-BRST operators [52].
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structure of the system composed of the two two-anyon subsystems, the composites of one
of which before switching on statistical interaction (α = 0) satisfy boson statistics, while
another subsystem is formed by two identical fermion particles. The exotic models given by
the Hamiltonians H

γ
α , γ = 0, π , with nontrivial behavior of the wavefunctions near the origin

correspond in this interpretation to the case of anyons with a contact (zero-range) interaction.
The hidden supersymmetric structure is reflected in the scattering picture. To see this,

consider the case of the Aharonov–Bohm model given by the Hamiltonian HAB
α . Its regular at

the origin eigenfunctions, which correspond to a plane wave incident from the right (x = +∞,
y = 0), have a form [1, 8, 54]

ψ =
∞∑

l=−∞
al eilϕJ|l+α|(kr), (7.3)

HAB
α ψ = k2ψ , where

al = e−i π
2 |l+α|. (7.4)

For the sake of definiteness, suppose that α ∈ (−1, 0). In this case, coefficients (7.4) satisfy
the relation

a2l = εia2l−1, where ε =
{−1 for l � 1,

+1 for l � 0.
(7.5)

Acting on (7.3) with the supercharge (2.14), and taking into account the recurrence relations
satisfied by the Bessel functions,

Jν∓1(x) =
(

± d

dx
+

ν

x

)
Jν(x),

and relation (7.5), we find that the energy eigenfunctions (7.3) are simultaneously the
supercharge eigenstates, QAB

α ψ = −kψ . The second supercharge (as well as the operator
R) transforms the state (7.3) into another eigenstate of HAB

α , which corresponds to the plane
wave incident from the left.

Making use of relation (7.5), energy eigenfunction (7.3) can be presented as a
superposition of the supercharge eigenstates (2.19),

ψ =
0∑

l=−∞

−

l +
+∞∑
l=1


+
l , (7.6)

where


−
l (r, ϕ) = ei π

2 α(−1)l e2ilϕ(J−(2l+α)(kr) − i e−iϕJ−(2l−1+α)(kr)), (7.7)


+
l (r, ϕ) = e−i π

2 α(−1)l e2ilϕ(J2l+α(kr) + i e−iϕJ2l−1+α(kr)), (7.8)

QAB
α 
−

l = −k
−
l , l = 0,−1,−2, . . . ,QAB

α 
+
l = −k
+

l , l = 1, 2, . . . . The energy eigenstate
Rψ(r, ϕ) = ψ(r, ϕ + π), that corresponds to the plane wave incident from the left, is the
eigenstate of the supercharge of the eigenvalue +k, QAB

α ψ(r, ϕ + π) = +kψ(r, ϕ + π).
The superpositions ψ(r, ϕ) ± iψ(r, ϕ + π) are the eigenstates of the second supercharge
Q2 = iRQAB

α , Q2(ψ(r, ϕ) ± iψ(r, ϕ + π)) = ∓k(ψ(r, ϕ) ± iψ(r, ϕ + π)). For α = −1/2,
the states (7.6) and Rψ form the invariant subspace also for two additional nonlocal integrals
of motion that appear in the system in this case, R̃x = −ieiϕRx, R̃y = eiϕRy, where
Rx : ϕ → π − ϕ, Ry : ϕ → −ϕ.

The nonphysical nature of the operators Px and Py can be revealed immediately if we
apply them to the Hamiltonian eigenfunction (7.3). The action of the operator Px + iPy
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−2 −1 0 1 2

αQ = Px − iRPy

Q = Px + iRPy

HAB
α

H0
αHπ

α

Figure 2. The figure illustrates the three different self-adjoint extensions of Hα in dependence on
α. Upper and lower cases correspond to different definitions (2.5) and (3.1) of the supercharges.
Rectangular shaded zones correspond to the setting discussed by Aharonov and Bohm, while gray
and white triangular zones correspond to the exotic models represented by H 0

α and Hπ
α respectively.

The circles for half-integer values of α indicate that H 0
α and Hπ

α are unitarily equivalent in this
case, see section 4.

produces a state, in which the l = 1 partial wave is multiplied by the function J|α|−1(kr)

that has a not permitted, singular behavior at the origin. Analogously, the state (Px − iPy)ψ

contains a partial wave with l = 0 multiplied by the singular at the origin function J−|α|(kr).
The supercharge (2.14) can be written in the form QAB

α = �+(Px + iPy) + �−(Px − iPy). Its
projectors on the subspaces with even and odd l, �± = 1

2 (1 ± R), just annul the singularities
produced by nonphysical operators Px ± iPy in corresponding partial waves. One can show
that in the case of the exotic systems H

γ
α , γ = 0, π , considered in section 3, the picture is

similar: the operators Px ± iPy acting on the states of the domain of the Hamiltonian H
γ
α ,

in contrast with the action of the supercharges, produce the states that do not belong to the
domain. This explains the mechanism of translation symmetry breaking, and its substitution
for the hidden supersymmetry, as well as a purely formal character of factorization (7.1). Note
also here that in the case α = n, the action of the operators Px ± iPy on the energy eigenstates
(7.3) does not produce singularities, and operators Px and Py commute on the domain of the
Hamiltonian HAB

n . This corresponds to a unitary equivalence of the model HAB
n to a free

planar particle system discussed in section 2.
Partial wave analysis applied to the wavefunction (7.3) gives the scattered wave with

asymptotic behavior for large r, see [1, 54], ψsc → r−1/2 eikrf (ϕ) ,

f (ϕ) = (2π ik)−1/2
+∞∑

l=−∞
eil(ϕ−π)(e2iδl − 1),

where the phase shifts are given by

δl = −π

2
|l + α| +

π

2
|l|. (7.9)

By taking into account (7.4) and (7.5), we get the relation

e2iδ2l = e2iδ2l−1 . (7.10)

This relation between the phase shifts reflects coherently with the picture presented in
figure 1, a hidden supersymmetry in the scattering problem of the spinless Aharonov–Bohm
model in the case α ∈ (−1, 0) mod 2. In the case α ∈ (0, 1) mod 2, index 2l − 1 on the
right-hand side of relation (7.10) is changed for 2l + 1 in correspondence with figure 2.

Finally, we note that the original Aharonov–Bohm calculation of the scattering amplitude
[1], mathematically more justified in comparison with partial wave analysis, see [54], was
based on the separation of the wavefunction (7.3) into three functions: ψ = ψ1 + ψ2 + ψ3.
In the case α ∈ (−1, 0), this corresponds to the separation of the wavefunction ψ in a partial
wave with l = 0 (ψ3), and in the infinite sums with l > 0 (ψ1) and l < 0 (ψ2) [1, 54]. For the
function ψ1 the equivalent integral representation was found in [1], that allowed the authors
to find its asymptotic expansion, and then to calculate the scattering amplitude. The function
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ψ1 is nothing else in the second series in (7.6). This means that the original method used in
[1] is coherent with the hidden supersymmetric structure revealed in the present paper.

In conclusion, let us discuss some open problems that would be interesting for further
investigation.

The stationary Schrödinger equation of the Aharonov–Bohm model is separable in polar
coordinates. Its radial equation corresponds to stationary Schrödinger equation of Calogero
model. When we specify the self-adjoint extension of the formal Hamiltonian operator Hα ,
the self-adjoint extension of the radial part of Hα is fixed as well. In other words, fixing
the value of the angular momentum, the (rotationally invariant) self-adjoint extension of Hα

fixes the self-adjoint extensions of the Calogero model [55]. In [56], Gitman et al discussed
recently the dilatation symmetry of the self-adjoint extensions of this one-dimensional system.
They concluded that there are only few self-adjoint extensions of the Calogero model which
possess scale invariance. We described three Aharonov–Bohm type systems, represented by
HAB

α and H
γ
α , γ = 0, π . These systems proved to be scale invariant. It is a quite intriguing

question, whether these two distinct symmetries, scale invariance and hidden supersymmetry,
are interrelated somehow. We suppose that this is indeed the case. Verification of this
hypothesis could provide a deeper insight into the physical system and its symmetries as well.

Recently, the hidden supersymmetry of the reflectionless Pöschl-Teller system was
explained in [57] in the context of non-relativistic AdS/CFT correspondence [58, 59]. The
rather natural question is then whether some AdS/CFT holography interpretation exists for the
hidden superconformal symmetry observed here.

The Aharonov–Bohm type systems described formally by Hα , can have up to two bound
states. The systems with negative energies were disqualified in our framework from the very
beginning by requirement of the presence of a self-adjoint supercharge. This is in correlation
with spontaneous breakdown of their scale invariance. However, such systems could fit into
the framework of the nonlinear supersymmetry. Analysis of this possibility requires a separate
consideration.

We analyzed the spinless particle case. It would be interesting to consider the systems
with spin degrees of freedom as well [53]. The spin one-half system would be governed by
the Pauli Hamiltonian, whose diagonal components would differ formally just in the sign of
the magnetic field, cf [50, 60]. This suggests that the actual self-adjoint extensions of the
upper and the lower diagonal elements of the matrix Hamiltonian could differ in some way.
The standard supersymmetry should be present then in addition to the hidden supersymmetry,
at least in some particular cases. The presence of both, explicit and hidden, supersymmetries
should give rise to the structure of tri-supersymmetry [26, 53, 61].

As we observed in section 4, in the case of half-integer flux values there exists a three-
parametric family of unitary transformations (4.5), generated by R, R̃x and R̃y . These
transformations do not change the formal Hamiltonian Hα , but interchange its self-adjoint
extensions. Hence, there exists a three-parametric family of self-adjoint extensions of Hα

which allow the existence of the hidden supersymmetry, see (4.14). We discussed a few
particular cases in (4.12), where the systems associated with Q̃

γ

1/2 for γ ∈ {0, π/2, π, 3π/2}
were interrelated by these unitary mappings. The family of all the self-adjoint extensions of
Hα is four parametric [31]. So it seems that a great part of the self-adjoint extensions of Hα

possess hidden supersymmetry for semi-integer values of α. It would be interesting to clarify
this point.

We investigated the question of the presence of the hidden supersymmetry in spinless
quantum mechanical Aharonov–Bohm type systems. The intriguing open question is whether
such a symmetry may be present in related field systems. The simplest system for such a
generalization could be a non-relativistic (2 + 1)-dimensional model of a boson field minimally
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coupled to a Chern–Simons field [35, 62, 63]. If the hidden bosonized supersymmetry of the
nature discussed here is present in such a field system, then its supersymmetrically extended
(by inclusion of a fermion field) version [48] would be described more readily than the osp(2|2)

superconformal structure [49], related to the tri-supersymmetry [26, 61].
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Appendix A

Let us present in more detail the procedure of self-adjoint extension of the following operator:

Q̂ = Px + iRPy.

The supercharge (2.5) coincides with this operator for α ∈ [−1, 0] mod 2. Q̂ can be identified
with (3.1) for α ∈ (0, 1) mod 2 as well. Hence, the analysis of self-adjoint extensions of
Q̂ for any value of the flux will provide, using the unitary transformation U1 consequently, a
complete information on self-adjoint extensions of both (2.5) and (3.1).

The symmetric operator Q is a restriction of Q̂ to C∞
0 (R2 − {0}). The following relation

will be useful in the forthcoming analysis:

(φ, Q̂ψ) − (Q̂φ,ψ) = lim
r→0+

∫ 2π

0
dϕ r[(−ı cos ϕ + R sin ϕ)φ(r, ϕ)]∗ψ(r, ϕ). (A.1)

One can easily see that Q is symmetric, since the right-hand side of equation (A.1) vanishes
for all φ,ψ ∈ D(Q).

The adjoint. The adjoint of Q, Q†, is a linear operator defined on the set of those functions for
which (φ, Q̂ψ) is a linear continuous functional of ψ ∈ D(Q) (see [30], for example). This
requires that for any φ ∈ D(Q†) there is a vector χ ∈ L2(R

2) such that

(φ,Qψ) = (χ,ψ), ∀ ψ ∈ D(Q). (A.2)

For each φ, this vector is unique (since D(Q) is dense in L2(R
2)) and the action of the adjoint

operator is defined as Q†φ := χ .
Since functions ψ(r, ϕ) ∈ D(Q) identically vanish in some neighborhood of the

origin, the right-hand side of equation (A.1) vanishes for any function φ(r, ϕ) such that
Q̂φ(r, ϕ) ∈ L2(R

2). Therefore, the adjoint operator is densely defined in

D(Q†) = {φ(r, ϕ) ∈ AC(R2\{0}) ∩ L2(R
2) : Q̂φ(r, ϕ) ∈ L2(R

2)}, (A.3)

where AC(R2\{0}) is a set of absolutely continuous functions in punctured plane [30].
Since the set {eımϕ,m ∈ Z} is a complete orthogonal system in L2(S

1), we can write

φ(r, ϕ) =
∑
m∈Z

eımϕ φm(r), (A.4)
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where φm(r) ∈ AC(R+\{0})∩L2(R
+; r dr). Then the condition Q̂φ(r, ϕ) ∈ L2(R

2) for α /∈ Z

reduces to

|φ2l(r)| =
{
O(1), for 2l + α /∈ (0, 1),

O(r−(2l+α)), for 2l + α ∈ (0, 1),
(A.5)

and

|φ2l−1(r)| =
{
O(1), for 2l − 1 + α /∈ (−1, 0),

O(r(2l−1+α)), for 2l − 1 + α ∈ (−1, 0).
(A.6)

For α = β − 2l0 ∈ Z, β ∈ {0, 1}, the partial waves φj are subject to the following
restrictions:

|φj | = O(1) for j �= 2l0 − β, |φ2l0−β | = O(
√

− log μr). (A.7)

The closure Q. The minimal closed extension of Q is called the closure of this operator, which
is defined as Q := (Q†)†. According to the previous discussion on the definition of the adjoint
operator and equation (A.1), it follows that its domain is the set of functions f (r, ϕ) for which
Q̂f (r, ϕ) ∈ L2(R

2) and (see (A.1))

lim
r→0+

∫ 2π

0
dϕ r [(−ı cos ϕ + R sin ϕ) f (r, ϕ)] φ(r, ϕ)∗ = 0, ∀φ(r, ϕ) ∈ D(Q†) . (A.8)

To get an insight into the restrictions on f (r, ϕ) posed by this requirement, it is convenient to
employ the Fourier series of f (r, ϕ),

f (r, ϕ) =
∑
m∈Z

eımϕfm(r), fm(r) ∈ AC(R+\{0}) ∩ L2(R
+; r dr). (A.9)

For α /∈ (0, 1)|mod2, the conditions posed on fm are identical to (A.5) and (A.6) (resp. (A.7)).
This means that the domains of definition Q† and Q are identical and the operator Q is
essentially self-adjoint15 in this case. Having in mind the note in the beginning of the appendix,
we conclude that the operator Qα defined in (2.5) has a unique self-adjoint extension QAB

α for
any value of the flux. Its domain of definition can be written as

D(QAB
α ) =

{
f (r, ϕ) =

∑
l

fl(r) eilϕ, fl ∈ AC(R+ \ {0}) ∩ L2(R
+l; r dr), |fl(r)| = O(1)

}

for α /∈ Z, (A.10)

and for α = −2l0 + β ∈ Z,

D(QAB
−2l0+β) =

{
f (r, ϕ) =

∑
l

fl(r) eilϕ, fl ∈ AC(R+ \ {0}) ∩ L2(R
+l; r dr),

|fl(r)| = O(1) for m �= −2l0 + β, |f2l0−β | = O(
√

− log r)

}
. (A.11)

For 2l0 + α ∈ (0, 1), the conditions on f2l0 and f2l0−1 are more restrictive,

f2l0(r) = o(r−(2l0+α)), f2l0−1(r) = o(r(2l0−1+α)). (A.12)

This means that the restriction of Q† to the subspaceHl0 has a larger domain than the restriction
of Q to this subspace. Since these domains do not coincide, Q is not essentially self-adjoint.
Let us remind that for these values of α, Q corresponds to Q̃α , see (3.1).

Deficiency subspaces. We will find solutions φ = φ2l e2liϕ + φ2l−1 e(2l−1)iϕ of Q†φ = ± iμφ

for φ ∈ D(Q†). We can use directly equation (2.18) for λ = ± iμ. It reduces to

φ′′
2l (r) +

1

r
φ′

2l(r) −
{
μ2 +

(2l + α)2

r2

}
φ2l (r) = 0. (A.13)

15 A densely defined symmetric operator A is essentially self-adjoint if A = A†.
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This differential equation has solutions of the form φ2l (r) = C1K|2l+α|(μr) + C2I|2l+α|(μr),
where Iν and Kν are the modified Bessel functions of the first and second (or Macdonald
function) kinds, respectively. The modified Bessel function of the first kind (Iν ) has to
be discarded as it diverges for f → +∞, C2 = 0 for all l. The function Kν decreases
exponentially in infinity. For r → +0, it reads

Kν(z) ∼ 2|ν|−1�(|ν|)z−|ν|(1 + O(z2)). (A.14)

We require the eigenvectors of Q† to lie in D(Q†) and to be square integrable in particular.
This requirement is met only for 0 < 2l + α < 1, i.e. for l = l0. Then there is one (and only
one) eigenvector of Q† corresponding to each of the eigenvalues λ = ±ıμ, given by


± = eı2l0ϕK2l0+α(μr) ± eı(2l0−1)ϕK1−(2l0+α)(μr). (A.15)

In the main text, we fixed the scale parameter μ = 1 without lost of generality. Note that
‖
+‖ = ‖
−‖.

Self-adjoint extensions. Hence, the deficiency subspaces K± are one-dimensional for
α ∈ (0, 1)|mod 2. We remind that Q coincides formally with Q̃α (defined in (3.1)) for this
value of the magnetic flux. The deficiency indices are equal to one, n± := dimK± = 1, and,
according to von Neumann’s theory of self-adjoint extensions of symmetric operators [30],
the self-adjoint extensions of Q̃α are characterized by the isometries K+ → K− (which, in
the present case, form a group U(1) whose elements correspond to a phase factor eıγ ). Let
us denote these self-adjoint extensions by Q

γ
α . Their domain of definition has the following

form:

D
(
Qγ

α

)
:= {
(r, ϕ) = f (r, ϕ) + A[
+(r, ϕ) + eıγ 
−(r, ϕ)] :

f (r, ϕ) ∈ D(Q),A ∈ C, γ ∈ [0, 2π)}. (A.16)

The domain of definition of Q for these values of the flux is given by (A.4), (A.5), (A.6) and
(A.12). The operator Q

γ
α acts as

Qγ
α
(r, ϕ) := Q†
(r, ϕ) = Qf (r, ϕ) + ıμA[
+(r, ϕ) − eıγ 
−(r, ϕ)]. (A.17)

Taking into account (A.15), the domain can be written as

D
(
Qγ

α

) = {f (r, ϕ) + A(K2l0+α e2l0iϕ(1 + eiγ ) + K1−2l0−α e(2l0−1)iϕ(1 − eiγ ))}, (A.18)

where f (r, ϕ) is from D(Q).

Appendix B

Let us take γ as a free parameter. The Hamiltonian H
γ
α is self-adjoint as it is a square of

self-adjoint supercharge Q̃
γ
α . We can define the domain Dc, see (5.4), for the current extension

H
γ
α . It is dense in L2(R

2) as it contains infinitely smooth functions with compact support as
well.

However, Dc cannot accommodate the wave packets (normalizable combinations of
scattering states) for general value of γ . Let us demonstrate this in the following way:
we restrict α ∈ [0, 1). Let 
0(r, ϕ) = φ0(r) + φ−1 e−iϕ be a function lying in the intersection
of H0, D

(
Q̃

γ
α

)
and D. It has the asymptotic behavior at the origin prescribed by (3.9). Acting

with D we get

Dφ0(r) ∼ A(1 − α)(1 + eiγ )
�(α)

21−α
r−α(1 + O(r2)), (B.1)
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Dφ−1(r) ∼ Aα(1 − eiγ )
�(1 − α)

2α
r−1+α(1 + O(r2)). (B.2)

We require that the resulting function does not leave the domain of definition of Q
γ
α . It is a

necessary condition to keep the wave packets composed of scattering states from H0 within
Dc. Considering α as a free parameter, this requirement can be satisfied just for γ = 0 or
γ = π . There exists another possibility as well: when α = 1/2, D
0 satisfies (3.9) for any
value of γ . This is in agreement with our observation of section 4, where the broader family
of the self-adjoint extensions with hidden supersymmetry generator UQ̃0

1/2U−1 was revealed
in the case of the half-integer flux. In particular, we discussed the systems associated with
Q̃

π/2
1/2 and Q̃

3π/2
1/2 .

Let us present here the domains of definitions of the operators D, S1, F and Z :

D(D) = D(D†) = {ψ(r, ϕ) ∈ AC(R2 \ {0}) ∩ L2(R
2)|r∂rψ(r, ϕ) ∈ L2(R

2)}, (B.3)

D(S2) = D(S1) = {� ∈ L2(R
2) : S1� ∈ L2(R

2)}, (B.4)

D(F ) = {� ∈ L2(R
2) : F� ∈ L2(R

2)}, (B.5)

D(Z) = {� ∈ L2(R
2) : Z� ∈ L2(R

2)}. (B.6)
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